Catalytic Activity in CO Oxidation of MnOx Supported on Oxide and Zeolite Carriers
DOI:
https://doi.org/10.17721/fujcV3I2P54-64Keywords:
MnOx, CO oxidation, TPR, IR of adsorbed CO, DR UV–VisAbstract
Catalytic activity in CO oxidation was investigated for MnOx-containing materials, prepared by impregnation of SiO2, Al2O3 and zeolites (ZSM-5, ERI). The catalysts were characterized by temperature-programmed reduction (TPR) by hydrogen, diffuse-reflectance UV–Vis (DR UV–Vis) and infra-red (IR) spectroscopy of adsorbed CO. Effect of the previous treatment of the MnOx-containing systems on the catalytic performance has been established. Higher catalytic activity in CO oxidation of the materials treated with air as compared with treated with hydrogen can be explained by presences of manganese ions in +3 and +4 oxidation states. 3%Mn-SiO2 previously treated with air at 350 °C is found to be the most active catalyst among the studied ones. MnOx, CO oxidation, TPR, IR of adsorbed CO, DR UV–Vis
References
Kapteijn F, Singoredjo L, Andreini A, Moulijn J. Activity and selectivity of pure manganese oxides in the selective catalytic reduction of nitric oxide with ammonia. Applied Catalysis B: Environmental 1994;3(2-3):173-189. https://doi.org/10.1016/0926-3373(93)e0034-9
Peng Y, Chang H, Dai Y, Li J. Structural and Surface Effect of MnO2 for Low Temperature Selective Catalytic Reduction of NO with NH3. Procedia Environmental Sciences 2013;18:384-390. https://doi.org/10.1016/j.proenv.2013.04.051
An Z, Zhuo Y, Xu C, Chen C. Influence of the TiO2 crystalline phase of MnOx/TiO2 catalysts for NO oxidation. Chinese Journal of Catalysis 2014;35(1):120-126. https://doi.org/10.1016/s1872-2067(12)60726-8
Saalfrank J, Maier W. Directed Evolution of Noble-Metal-Free Catalysts for the Oxidation of CO at Room Temperature. Angewandte Chemie International Edition 2004;43(15):2028-2031. https://doi.org/10.1002/anie.200351935
Liang S, Teng F, Bulgan G, Zong R, Zhu Y. Effect of Phase Structure of MnO 2 Nanorod Catalyst on the Activity for CO Oxidation . J. Phys. Chem. C 2008;112(14):5307-5315. https://doi.org/10.1021/jp0774995
Han Y, Chen F, Zhong Z, Ramesh K, Chen L, Widjaja E. Controlled Synthesis, Characterization, and Catalytic Properties of Mn 2 O 3 and Mn 3 O 4 Nanoparticles Supported on Mesoporous Silica SBA-15 . The Journal of Physical Chemistry B 2006;110(48):24450-24456. https://doi.org/10.1021/jp064941v
Craciun R, Nentwick B, Hadjiivanov K, Knözinger H. Structure and redox properties of MnOx/Yttrium-stabilized zirconia (YSZ) catalyst and its used in CO and CH4 oxidation. Applied Catalysis A: General 2003;243(1):67-79. https://doi.org/10.1016/s0926-860x(02)00538-0
Álvarez-Galván M, de la Peña O’Shea V, Fierro J, Arias P. Alumina-supported manganese- and manganese–palladium oxide catalysts for VOCs combustion. Catalysis Communications 2003;4(5):223-228. https://doi.org/10.1016/s1566-7367(03)00037-2
Pozan G. Effect of support on the catalytic activity of manganese oxide catalyts for toluene combustion. Journal of Hazardous Materials 2012;221-222:124-130. https://doi.org/10.1016/j.jhazmat.2012.04.022
Wang L, Liu Q, Huang X, Liu Y, Cao Y, Fan K. Gold nanoparticles supported on manganese oxides for low-temperature CO oxidation. Applied Catalysis B: Environmental 2009;88(1-2):204-212. https://doi.org/10.1016/j.apcatb.2008.09.031
Ramesh K, Chen L, Chen F, Liu Y, Wang Z, Han Y. Re-investigating the CO oxidation mechanism over unsupported MnO, Mn2O3 and MnO2 catalysts. Catalysis Today 2008;131(1-4):477-482. https://doi.org/10.1016/j.cattod.2007.10.061
Kantcheva M, Kucukkal M, Suzer S. Spectroscopic Investigation of Species Arising from CO Chemisorption on Titania-Supported Manganese. Journal of Catalysis 2000;190(1):144-156. https://doi.org/10.1006/jcat.1999.2757
Astudillo J, Águila G, Díaz F, Guerrero S, Araya P. Study of CuO–CeO2 catalysts supported on SiO2 on the low-temperature oxidation of CO. Applied Catalysis A: General 2010;381(1-2):169-176. https://doi.org/10.1016/j.apcata.2010.04.004
Tepluchin M, Casapu M, Boubnov A, Lichtenberg H, Wang D, Kureti S, Grunwaldt J. Fe and Mn-Based Catalysts Supported on γ-Al 2 O 3 for CO Oxidation under O 2 -Rich Conditions . ChemCatChem 2014;6(6):1763-1773. https://doi.org/10.1002/cctc.201301040
Weitkamp J. Zeolites and catalysis. Solid State Ionics 2000;131(1-2):175-188. https://doi.org/10.1016/s0167-2738(00)00632-9
Oleksenko L, Yatsimirsky V, Telbiz G, Lutsenko L. Adsorption and Catalytic Properties of Co/ZSM-5 Zeolite Catalysts for CO Oxidation. Adsorption Science & Technology 2004;22(7):535-541. https://doi.org/10.1260/0263617042879456
Yatsimirskii V, Oleksenko L, Lutsenko L, Chen Y. The effects of the conditions of formation of Ag-Co zeolite supported systems on their activity in the oxidation of carbon monoxide. Russ. J. Phys. Chem. A 2008;82(9):1460-1463. https://doi.org/10.1134/s0036024408090094
Oleksenko L, Lutsenko L. Catalytic activity of bimetal-containing Co,Pd systems in the oxidation of carbon monoxide. Russian Journal of Physical Chemistry A 2013;87(2):180-184. https://doi.org/10.1134/s0036024413020210
Arena F, Torre T, Raimondo C, Parmaliana A. Structure and redox properties of bulk and supported manganese oxide catalysts. Phys. Chem. Chem. Phys. 2001;3(10):1911-1917. https://doi.org/10.1039/b100091h
Singoredjo L, Korver R, Kapteijn F, Moulijn J. Alumina supported manganese oxides for the low-temperature selective catalytic reduction of nitric oxide with ammonia. Applied Catalysis B: Environmental 1992;1(4):297-316. https://doi.org/10.1016/0926-3373(92)80055-5
Derylo-Marczewska A, Gac W, Popivnyak N, Zukocinski G, Pasieczna S. The influence of preparation method on the structure and redox properties of mesoporous Mn-MCM-41 materials. Catalysis Today 2006;114(2-3):293-306. https://doi.org/10.1016/j.cattod.2006.02.066
Akolekar D, Bhargava S. NO and CO adsorption studies on transition metal-exchanged silico-aluminophosphate of type 34 catalysts. Applied Catalysis A: General 2001;207(1-2):355-365. https://doi.org/10.1016/s0926-860x(00)00669-4
Downloads
Additional Files
Published
Issue
Section
License
Copyright (c) 2015 French-Ukrainian Journal of Chemistry

This work is licensed under a Creative Commons Attribution 4.0 International License.
The French‑Ukrainian Journal of Chemistry holds copyright and publishes all articles under a Creative Commons Attribution 4.0 International licence (CC BY 4.0).
This license permits unrestricted use, sharing, adaptation, distribution, and reproduction in any medium or format, provided that the original author(s) and source are credited, a link to the license is included, and any changes made are indicated.
Authors grant the French‑Ukrainian Journal of Chemistry the exclusive right of first publication and may enter into separate, non‑exclusive distribution agreements for the published version (e.g., institutional repository, book chapter). Authors are also encouraged to post pre‑prints and post‑prints online to increase visibility and citation.