Catalytic Activity in CO Oxidation of MnOx Supported on Oxide and Zeolite Carriers

Authors

  • Larisa V. Lutsenko Taras Shevchenko National University of Kyiv
  • Ludmila P. Oleksenko Taras Shevchenko National University of Kyiv
  • German M. Telbiz Institute of Physical Chemistry, NAS of Ukraine
  • Victoriia G. Gerasova Taras Shevchenko National University of Kyiv

DOI:

https://doi.org/10.17721/fujcV3I2P54-64

Keywords:

MnOx, CO oxidation, TPR, IR of adsorbed CO, DR UV–Vis

Abstract

Catalytic activity in CO oxidation was investigated for MnOx-containing materials, prepared by impregnation of SiO2, Al2O3 and zeolites (ZSM-5, ERI). The catalysts were characterized by temperature-programmed reduction (TPR) by hydrogen, diffuse-reflectance UV–Vis (DR UV–Vis) and infra-red (IR) spectroscopy of adsorbed CO. Effect of the previous treatment of the MnOx-containing systems on the catalytic performance has been established. Higher catalytic activity in CO oxidation of the materials treated with air as compared with treated with hydrogen can be explained by presences of manganese ions in +3 and +4 oxidation states. 3%Mn-SiO2 previously treated with air at 350 °C is found to be the most active catalyst among the studied ones. MnOx, CO oxidation, TPR, IR of adsorbed CO, DR UV–Vis

References

Kapteijn F, Singoredjo L, Andreini A, Moulijn J. Activity and selectivity of pure manganese oxides in the selective catalytic reduction of nitric oxide with ammonia. Applied Catalysis B: Environmental 1994;3(2-3):173-189. https://doi.org/10.1016/0926-3373(93)e0034-9

Peng Y, Chang H, Dai Y, Li J. Structural and Surface Effect of MnO2 for Low Temperature Selective Catalytic Reduction of NO with NH3. Procedia Environmental Sciences 2013;18:384-390. https://doi.org/10.1016/j.proenv.2013.04.051

An Z, Zhuo Y, Xu C, Chen C. Influence of the TiO2 crystalline phase of MnOx/TiO2 catalysts for NO oxidation. Chinese Journal of Catalysis 2014;35(1):120-126. https://doi.org/10.1016/s1872-2067(12)60726-8

Saalfrank J, Maier W. Directed Evolution of Noble-Metal-Free Catalysts for the Oxidation of CO at Room Temperature. Angewandte Chemie International Edition 2004;43(15):2028-2031. https://doi.org/10.1002/anie.200351935

Liang S, Teng F, Bulgan G, Zong R, Zhu Y. Effect of Phase Structure of MnO 2 Nanorod Catalyst on the Activity for CO Oxidation . J. Phys. Chem. C 2008;112(14):5307-5315. https://doi.org/10.1021/jp0774995

Han Y, Chen F, Zhong Z, Ramesh K, Chen L, Widjaja E. Controlled Synthesis, Characterization, and Catalytic Properties of Mn 2 O 3 and Mn 3 O 4 Nanoparticles Supported on Mesoporous Silica SBA-15 . The Journal of Physical Chemistry B 2006;110(48):24450-24456. https://doi.org/10.1021/jp064941v

Craciun R, Nentwick B, Hadjiivanov K, Knözinger H. Structure and redox properties of MnOx/Yttrium-stabilized zirconia (YSZ) catalyst and its used in CO and CH4 oxidation. Applied Catalysis A: General 2003;243(1):67-79. https://doi.org/10.1016/s0926-860x(02)00538-0

Álvarez-Galván M, de la Peña O’Shea V, Fierro J, Arias P. Alumina-supported manganese- and manganese–palladium oxide catalysts for VOCs combustion. Catalysis Communications 2003;4(5):223-228. https://doi.org/10.1016/s1566-7367(03)00037-2

Pozan G. Effect of support on the catalytic activity of manganese oxide catalyts for toluene combustion. Journal of Hazardous Materials 2012;221-222:124-130. https://doi.org/10.1016/j.jhazmat.2012.04.022

Wang L, Liu Q, Huang X, Liu Y, Cao Y, Fan K. Gold nanoparticles supported on manganese oxides for low-temperature CO oxidation. Applied Catalysis B: Environmental 2009;88(1-2):204-212. https://doi.org/10.1016/j.apcatb.2008.09.031

Ramesh K, Chen L, Chen F, Liu Y, Wang Z, Han Y. Re-investigating the CO oxidation mechanism over unsupported MnO, Mn2O3 and MnO2 catalysts. Catalysis Today 2008;131(1-4):477-482. https://doi.org/10.1016/j.cattod.2007.10.061

Kantcheva M, Kucukkal M, Suzer S. Spectroscopic Investigation of Species Arising from CO Chemisorption on Titania-Supported Manganese. Journal of Catalysis 2000;190(1):144-156. https://doi.org/10.1006/jcat.1999.2757

Astudillo J, Águila G, Díaz F, Guerrero S, Araya P. Study of CuO–CeO2 catalysts supported on SiO2 on the low-temperature oxidation of CO. Applied Catalysis A: General 2010;381(1-2):169-176. https://doi.org/10.1016/j.apcata.2010.04.004

Tepluchin M, Casapu M, Boubnov A, Lichtenberg H, Wang D, Kureti S, Grunwaldt J. Fe and Mn-Based Catalysts Supported on γ-Al 2 O 3 for CO Oxidation under O 2 -Rich Conditions . ChemCatChem 2014;6(6):1763-1773. https://doi.org/10.1002/cctc.201301040

Weitkamp J. Zeolites and catalysis. Solid State Ionics 2000;131(1-2):175-188. https://doi.org/10.1016/s0167-2738(00)00632-9

Oleksenko L, Yatsimirsky V, Telbiz G, Lutsenko L. Adsorption and Catalytic Properties of Co/ZSM-5 Zeolite Catalysts for CO Oxidation. Adsorption Science & Technology 2004;22(7):535-541. https://doi.org/10.1260/0263617042879456

Yatsimirskii V, Oleksenko L, Lutsenko L, Chen Y. The effects of the conditions of formation of Ag-Co zeolite supported systems on their activity in the oxidation of carbon monoxide. Russ. J. Phys. Chem. A 2008;82(9):1460-1463. https://doi.org/10.1134/s0036024408090094

Oleksenko L, Lutsenko L. Catalytic activity of bimetal-containing Co,Pd systems in the oxidation of carbon monoxide. Russian Journal of Physical Chemistry A 2013;87(2):180-184. https://doi.org/10.1134/s0036024413020210

Arena F, Torre T, Raimondo C, Parmaliana A. Structure and redox properties of bulk and supported manganese oxide catalysts. Phys. Chem. Chem. Phys. 2001;3(10):1911-1917. https://doi.org/10.1039/b100091h

Singoredjo L, Korver R, Kapteijn F, Moulijn J. Alumina supported manganese oxides for the low-temperature selective catalytic reduction of nitric oxide with ammonia. Applied Catalysis B: Environmental 1992;1(4):297-316. https://doi.org/10.1016/0926-3373(92)80055-5

Derylo-Marczewska A, Gac W, Popivnyak N, Zukocinski G, Pasieczna S. The influence of preparation method on the structure and redox properties of mesoporous Mn-MCM-41 materials. Catalysis Today 2006;114(2-3):293-306. https://doi.org/10.1016/j.cattod.2006.02.066

Akolekar D, Bhargava S. NO and CO adsorption studies on transition metal-exchanged silico-aluminophosphate of type 34 catalysts. Applied Catalysis A: General 2001;207(1-2):355-365. https://doi.org/10.1016/s0926-860x(00)00669-4

Downloads

Published

2015-11-30