New Ferrocene Derivatives for Ligand Grafting
DOI:
https://doi.org/10.17721/fujcV3I2P131-139Keywords:
ferrocene, grafting, P, N ligands, O ligandsAbstract
Five new 1,2-disubstituted ferrocene derivatives have been efficiently synthesized. These compounds contain one protected phosphine function as thiophosphine, another coordination site (nitrogen or oxygen atom) and a function ready for the grafting on various supports. All compounds have been and fully characterized by NMR(1H, 31P and 13C) and High Resolution Mass Spectroscopy. The molecular structure of three of these ferrocene derivatives have been determined by X ray diffraction analysis on monocrystals.
References
Thomas S. The Advantages of Exploring the Interface Between Heterogeneous and Homogeneous Catalysis. ChemCatChem 2010;2(2):127-132. https://doi.org/10.1002/cctc.200900275
Heitbaum M, Glorius F, Escher I. Asymmetric Heterogeneous Catalysis. Angewandte Chemie International Edition 2006;45(29):4732-4762. https://doi.org/10.1002/anie.200504212
Zamboulis A, Moitra N, Moreau J, Cattoën X, Wong Chi Man M. Hybrid materials: versatile matrices for supporting homogeneous catalysts. Journal of Materials Chemistry 2010;20(42):9322. https://doi.org/10.1039/c000334d
Dickerson T, Reed N, Janda K. Soluble Polymers as Scaffolds for Recoverable Catalysts and Reagents. Chemical Reviews 2002;102(10):3325-3344. https://doi.org/10.1021/cr010335e
Bräse S, Lauterwasser F, Ziegert R. Recent Advances in Asymmetric CC and C-Heteroatom Bond Forming Reactions using Polymer-Bound Catalysts. Advanced Synthesis & Catalysis 2003;345(8):869-929. https://doi.org/10.1002/adsc.200202164
Lu J, Toy P. Organic Polymer Supports for Synthesis and for Reagent and Catalyst Immobilization. Chemical Reviews 2009;109(2):815-838. https://doi.org/10.1021/cr8004444
Bergbreiter D, Tian J, Hongfa C. Using Soluble Polymer Supports To Facilitate Homogeneous Catalysis. Chemical Reviews 2009;109(2):530-582. https://doi.org/10.1021/cr8004235
Zhang X, Cardozo A, Chen S, Zhang W, Julcour C, Lansalot M, Blanco J, Gayet F, Delmas H, Charleux B, Manoury E, D'Agosto F, Poli R. Core-Shell Nanoreactors for Efficient Aqueous Biphasic Catalysis. Chemistry - A European Journal 2014;20(47):15505-15517. https://doi.org/10.1002/chem.201403819
Astruc D, Chardac F. Dendritic Catalysts and Dendrimers in Catalysis. Chemical Reviews 2001;101(9):2991-3024. https://doi.org/10.1021/cr010323t
Oosterom G, Reek J, Kamer P, van Leeuwen P. Transition Metal Catalysis Using Functionalized Dendrimers. Angewandte Chemie International Edition 2001;40(10):1828-1849. https://doi.org/10.1002/1521-3773(20010518)40:10<1828::aid-anie1828>3.0.co;2-y
Caminade A, Maraval V, Laurent R, Majoral J. Organometallic Derivatives of Phosphorus-containing Dendrimers. Synthesis, Properties and Applications in Catalysis.. Current Organic Chemistry 2002;6(8):739-774. https://doi.org/10.2174/1385272023374012
Caminade A, Ouali A, Keller M, Majoral J. Organocatalysis with dendrimers. Chemical Society Reviews 2012;41(11):4113. https://doi.org/10.1039/c2cs35030k
Dahan A, Portnoy M. Dendrons and dendritic catalysts immobilized on solid support: Synthesis and dendritic effects in catalysis. J. Polym. Sci. A Polym. Chem. 2004;43(2):235-262. https://doi.org/10.1002/pola.20524
Li Z, Li J. Dendrimer-Supported Catalysts for Organic Synthesis. Current Organic Chemistry 2013;17(12):1334-1349. https://doi.org/10.2174/1385272811317120008
Wang D, Astruc D. Dendritic catalysis—Basic concepts and recent trends. Coordination Chemistry Reviews 2013;257(15-16):2317-2334. https://doi.org/10.1016/j.ccr.2013.03.032
Caminade A, Ouali A, Laurent R, Majoral J. Phosphorus dendrimers as supports of transition metal catalysts. Inorganica Chimica Acta 2015;431:3-20. https://doi.org/10.1016/j.ica.2014.10.035
Manoury E, Poli R. Phosphine-Containing Planar Chiral Ferrocenes: Synthesis, Coordination Chemistry and Applications to Asymmetric Catalysis. Phosphorus Compounds 2011:121-149. https://doi.org/10.1007/978-90-481-3817-3_5
Manoury E, Fossey J, Aït-Haddou H, Daran J, Balavoine G. New Ferrocenyloxazoline for the Preparation of Ferrocenes with Planar Chirality. Organometallics 2000;19(18):3736-3739. https://doi.org/10.1021/om000016y
Mourgues S, Serra D, Lamy F, Vincendeau S, Daran J, Manoury E, Gouygou M. Chiral [(Dialkylamino)methyl](phospholyl)ferrocene Ligands as a New Class of 1,2-Disubstituted Ferrocene Ligands. Eur. J. Inorg. Chem. 2003;2003(15):2820-2826. https://doi.org/10.1002/ejic.200200671
Routaboul L, Vincendeau S, Daran J, Manoury E. New ferrocenyl P,S and S,S ligands for asymmetric catalysis. Tetrahedron: Asymmetry 2005;16(16):2685-2690. https://doi.org/10.1016/j.tetasy.2005.07.027
Mateus N, Routaboul L, Daran J, Manoury E. Synthesis and catalytic applications of new chiral ferrocenyl P,O ligands. Journal of Organometallic Chemistry 2006;691(10):2297-2310. https://doi.org/10.1016/j.jorganchem.2005.11.053
Guadalupe Lopez Cortes J, Ramon O, Vincendeau S, Serra D, Lamy F, Daran J, Manoury E, Gouygou M. New Chiral Ferrocene-Bridged Phosphole–Phosphane Ligands. Eur. J. Inorg. Chem. 2006;2006(24):5148-5157. https://doi.org/10.1002/ejic.200600771
Routaboul L, Vincendeau S, Turrin C, Caminade A, Majoral J, Daran J, Manoury E. New phosphorus dendrimers with chiral ferrocenyl phosphine-thioether ligands on the periphery for asymmetric catalysis. Journal of Organometallic Chemistry 2007;692(5):1064-1073. https://doi.org/10.1016/j.jorganchem.2006.10.065
Malacea R, Daran J, Poli R, Manoury E. Combining planar and central chirality in ferrocene thiophosphine-sulfoxides. Tetrahedron: Asymmetry 2013;24(9-10):612-620. https://doi.org/10.1016/j.tetasy.2013.04.002
Diab L, Gouygou M, Manoury E, Kalck P, Urrutigoïty M. Highly regioselective palladium-catalyzed methoxycarbonylation of styrene using chiral ferrocene- and biphosphole-based ligands. Tetrahedron Letters 2008;49(35):5186-5189. https://doi.org/10.1016/j.tetlet.2008.06.057
Le Roux E, Malacea R, Manoury E, Poli R, Gonsalvi L, Peruzzini M. Highly Efficient Asymmetric Hydrogenation of Alkyl Aryl Ketones Catalyzed by Iridium Complexes with Chiral Planar Ferrocenyl Phosphino-Thioether Ligands. Advanced Synthesis & Catalysis 2007;349(3):309-313. https://doi.org/10.1002/adsc.200600350
Wei M, Garcı́a-Melchor M, Daran J, Audin C, Lledós A, Poli R, Deydier E, Manoury E. Coordination Chemistry of New Chiral P,N Ferrocenyl Ligands with Half-Sandwich Ruthenium(II), Rhodium(III), and Iridium(III) Complexes. Organometallics 2012;31(18):6669-6680. https://doi.org/10.1021/om300738q
Kozinets E, Silantyev G, Belkova N, Shubina E, Poli R, Manoury E. Iridium and rhodium complexes with the planar chiral thioether ligands in asymmetric hydrogenation of ketones and imines. Russian Chemical Bulletin 2013;62(3):751-757. https://doi.org/10.1007/s11172-013-0102-5
Biosca M, Coll M, Lagarde F, Brémond E, Routaboul L, Manoury E, Pàmies O, Poli R, Diéguez M. Chiral ferrocene-based P,S ligands for Ir-catalyzed hydrogenation of minimally functionalized olefins. Scope and limitations. Tetrahedron 2016;72(21):2623-2631. https://doi.org/10.1016/j.tet.2015.01.047
Debono N, Labande A, Manoury E, Daran J, Poli R. Palladium Complexes of Planar Chiral Ferrocenyl Phosphine-NHC Ligands: New Catalysts for the Asymmetric Suzuki−Miyaura Reaction. Organometallics 2010;29(8):1879-1882. https://doi.org/10.1021/om100125k
Loxq P, Debono N, Gülcemal S, Daran J, Manoury E, Poli R, Çetinkaya B, Labande A. Palladium( ii ) complexes with planar chiral ferrocenyl phosphane–(benz)imidazol-2-ylidene ligands . New J. Chem. 2014;38(1):338-347. https://doi.org/10.1039/c3nj00863k
Bayda S, Cassen A, Daran J, Audin C, Poli R, Manoury E, Deydier E. Synthesis and characterization of new chiral P,O ferrocenyl ligands and catalytic application to asymmetric Suzuki–Miyaura coupling. Journal of Organometallic Chemistry 2014;772-773:258-264. https://doi.org/10.1016/j.jorganchem.2014.09.027
Hayashi T, Mise T, Fukushima M, Kagotani M, Nagashima N, Hamada Y, Matsumoto A, Kawakami S, Konishi M, Yamamoto K, Kumada M. Asymmetric synthesis catalyzed by chiral ferrocenylphosphine-transition metal complexes. I. Preparation of chiral ferrocenylphosphines.. Bulletin of the Chemical Society of Japan 1980;53(4):1138-1151. https://doi.org/10.1246/bcsj.53.1138
Sheldrick G. A short history of SHELX . Acta Cryst Sect A 2007;64(1):112-122. https://doi.org/10.1107/s0108767307043930
Flack H, Bernardinelli G. The use of X-ray crystallography to determine absolute configuration. Chirality 2008;20(5):681-690. https://doi.org/10.1002/chir.20473
Farrugia L. ORTEP -3 for Windows - a version of ORTEP -III with a Graphical User Interface (GUI) . J Appl Cryst 1997;30(5):565-565. https://doi.org/10.1107/s0021889897003117
Downloads
Published
Issue
Section
License
Copyright (c) 2016 French-Ukrainian Journal of Chemistry

This work is licensed under a Creative Commons Attribution 4.0 International License.
The French‑Ukrainian Journal of Chemistry holds copyright and publishes all articles under a Creative Commons Attribution 4.0 International licence (CC BY 4.0).
This license permits unrestricted use, sharing, adaptation, distribution, and reproduction in any medium or format, provided that the original author(s) and source are credited, a link to the license is included, and any changes made are indicated.
Authors grant the French‑Ukrainian Journal of Chemistry the exclusive right of first publication and may enter into separate, non‑exclusive distribution agreements for the published version (e.g., institutional repository, book chapter). Authors are also encouraged to post pre‑prints and post‑prints online to increase visibility and citation.